光散乱式粉じん計の較正に関する研究

–実験値と理論値の比較・検証–

建設工学専攻

建築環境工学研究

1. 研究背景·目的

日本では、建物内の良質な空気環境は、建築物衛生 法により「空気中の浮遊粉じん量(Suspended Particulate Matter,以下 SPM)は0.15mg/m3以下」 と定められている。現在の建物内の SPM は大幅に低 下しており、浮遊粉じんの測定機器はより高い精度

が求められる。 浮遊粉じんの測定法は同法律により、LV(Low Volume Air Sampler,以下 LV)を用いた重量法が基本 的な測定法として規定されている。しかし、この測定 法は長時間の測定を要する他、ろ紙の扱いには熟練 した技術、秤量に用いる電子天秤には非常に高精度 なものが求められるため、LV を用いた重量法は実用 的ではない。そのため、実際の現場では操作が容易で かつ短時間で測定が可能なフォトメーター (Photometer,以下 PM)が使用される場合が多い。こ の PM は、粉じんの大きさ、形状、反射率、比重な どがほぼ一定の場合、吸引した粉じんにレーザーを 照射することによって生じる散乱光の強度が質量濃 度に比例して変化する原理を利用することで、1分間 のカウント値 (count per minute,以下 cpm) として 測定され、実空間内での浮遊粉じんとの密度や形な どの違いを考慮し較正係数 K を乗じることで質量濃 度を求めることが JIS B 8813 において決められてい る。そのため、この測定法は相対濃度法と呼ばれてい る。PMの較正において、基準とされているのは粒子 径 0.3μm、幾何標準偏差 σg=1.4 以下のステアリン酸 粒子(以下 SA0.3)である。しかし、このステアリン酸 粒子を基準とした較正は議論の余地があるとされて いる。また、微粒子における光散乱には、Mie 散乱と Railiegh 散乱、幾何学的散乱があり、それぞれ対象 となる粒子径が異なる。微粒子の光散乱現象に関す るパラメータとして入射光の波長 λ[μm]と粒子径 d[um]で定義される粒径パラメータ α(α=πd/λ)があり 粒径パラメータ α≒1 の時 Mie 散乱を生じる。主に PM の測定領域となる粒子径は Mie 散乱領域の粒子 である。一般的に、この範囲での粒度分布の形状は、

対数正規分布に近似されるとされているが、理論的 根拠はない。

本研究では、SA0.3 の他、粒子径 1.0[µm]のステアリ ン酸粒子(以下 SA1.0)、試験用粒子として用いられ る ISO 12103-1 アリゾナダスト(以下 AD)、JIS Z 8901 関東ローム(以下 KL)を使い較正を行った既 往の研究¹⁾に対し、実測値と理論値の比較・検証を行 う。

2. 手法

SA0.3、SA1.0、AD、KLの各較正粒子の実測結果 による粒度分布を対数正規分布として近似する。近 似した粒度分布と実測結果による粒度分布において、 生じる散乱光強度をそれぞれ計算し、PMの感度に換 算することで、機種ごとの較正係数 K'を疑似的に求 める。求めた較正係数 K'を用い、既往の研究による

ME20012 家住 憲司 指導教員 西村 直也

較正係数 K'を理論的な面から比較、検証を行う。散 乱光強度の計算には、scatterlib²⁾にてオープンソー スとして公開されている Barber and Hill の Mie 散 乱の計算プログラムを用いる。検証に用いる散乱角 度は実測に使用した2社のPMのうち、A社が135°、 B 社が 90°を採用しているため、この 2 つの散乱角 度の散乱光強度の値を使用する。また、入射光の波長 に関しては、2 社の PM が共に採用している赤色レ ーザーの 0.780[µm]の他、同じく赤色レーザーの 0.635[um]、緑色レーザーの 0.532[um]の計 3 パター ンで計算を行う。各較正粒子の屈折率は、SA0.3 およ び SA1.0 に関しては参考文献より引用 3、AD およ びKLに関しては、屈折率が不明なため、それぞれの 構成物質の屈折率と含有率から平均的に算出した値 を用いる 4)。各較正粒子の実測結果(既往研究)による 粒度分布を図1に、各較正粒子の幾何平均 µg[µm]と 幾何標準偏差 σg を表1に、屈折率を表2に、算出し た較正係数 K'を表3に示す。

衣 一 谷牧正粒子の粒度力前の内部				
	μg[μm]	σg		
SA0.3	0.328	1.028		
SA1.0	1.03	1.028		
AD	5.078	1.298		
KL	5.708	1.368		
表2 採用した各較正粒子の屈折率				
	Real Index	Imaginary Index		
SA0.3	1.432	0.000375		
SA1.0	1.432	0.000375		
AD	1.775	0.001		
KL	1.908	0.006		
表3 算出した較正係数 K'(波長 0.780[µm])				
	PM(A)	PM(B)		
SA0.3	1.000	1.000		
SA1.0	2.449	1.806		
AD	1.597	1.993		
KL	1.788	1.926		

3. 比較・検証結果

波長 0.780[µm]において算出した較正係数 K'を適 用した較正結果を図2、図3、表4、表5に、既往の 研究」による較正結果を表6に示す。図2.3ともに縦 軸に算出した較正係数 K'を適用した場合の質量濃度、 横軸にLVによる質量濃度測定結果を示している。各 近似曲線の傾き、その逆数 K'は1 に近いほど望まし い結果といえる。はじめに、対数正規分布近似を用い た較正結果である図 2,表 4 について既往研究と比較 すると、SA0.3 に関しては、傾きが 0.581 となり、既 往研究と近い結果となった。このことから、SA0.3の 散乱光強度計算は概ね妥当な結果と言える。SA1.0 に 関しては傾きが 0.971 となり、最も1に近い結果とな ったが、既往研究とは差が生まれる結果となった。 AD、KLに関しては、傾きがそれぞれ 0.300、0.456 と なり、既往研究と大きな差が生まれる結果となり、較 正用粒子としては望ましい結果とはならなかった。 次に、実測結果の粒度分布を用いた較正結果である 図3、表5について既往研究と比較すると、SA0.3に 関しては基準としているため、対数正規分布の場合 と同様の結果となった。SA1.0、AD に関しては、傾 きがそれぞれ 0.812、0.605 となり、既往研究と大き な差が生まれる結果となった。最後に、KL に関して は、傾きが 1.034、相関係数 0.813 と既往研究に非常 に近い結果となった。

以上の結果から、対数正規分布近似による較正結 果では、SA0.3 以外の SA1.0,AD,KL が既往研究とは 大きく差が生まれる結果となった。また、実際の粒度 分布による較正結果での差に関しては、近似したモデ ルと実際の粒度分布に差が生まれていたことが較正 結果に大きく影響したと考えられる。次に、実際の粒 度分布を用いた較正結果では、SA1.0、AD に関して は既往研究と差が生まれる結果となったが、KL に関 しては既往研究と非常に近しい結果となり、較正用 粒子として望ましい結果が得られた。

4. まとめ

本研究では、各較正粒子について散乱光特性の面 から既往研究との比較・検証を行い、KL が較正用粒 子として望ましいといえる結果を示した。対数正規 分布近似した粒度分布と実測による粒度分布による 結果の差に関しては、近似したモデルと実際の粒度 分布に差が生まれたことで、較正結果に影響が出た と考えられる。現在、粒度分布は対数正規分布近似す るとされているが、理論的根拠が存在しないため、議 論の余地があると考えられる。

今後の課題として、SA1.0 については、SA1.0 の粒 度分布においてピークであった 1.0[µm]付近の測定 範囲が大きく、詳細な測定ができなかったことが散 乱光強度計算に大きく影響を与えた要因と考えられ る。そのため、SA1.0 の分布において詳細な測定が求 められる。また、AD に関しては屈折率が不明であり、 含有率から平均的に算出した値を用いているため、 議論の余地が存在すると考えられる

参考文献

- 西村直也・斎藤教子: "光散乱式粉じん計の較正に関する研究" 芝浦工業大学 日本建築衛生管理教育センター
- 2) "scatterlib" http://scatterlib.wikidot.com, (参照 2019.8)
- 3) B.M.CRAIG: "Refractive indices of some saturated and monoethenoid fatty acids and methyl esters", 1953
- 4)山下憲一・川田憲男: "JIS Z 8901試験用粉体及び試験用粒 子に定める試験用粉体1の粒径分布測定" 粉体工学会

0.070 SA0.3 0 SA1.0 ۸ 0.060 AD KL × Mass Concentratiion Measured - SA0.3 SA1.0 0.050 AD KL by PM[mg/m³] 0.040 0.030 Δ 0.020 لار K ₳ Δ 0.010 0.000 0.000 0.010 0.020 0.030 0.040 0.050

Mass Concentratiion Measured by LV[mg/m³]

図2 対数正規分布近似による各較正粒子の感度分布

表4 各較正粒子の感度とK'値

	SA0.3	SA1.0	AD	KL
Gradient.	0.581	0.971	0.300	0.456
\mathbb{R}^2	0.837	0.637	0.575	0.854
K'	1.723	1.030	3.331	2.193

表5 既往研究による各戦止粒子の感度とK 値				
	SA0.3	SA1.0	AD	KL
Gradient.	0.581	0.812	0.605	1.034
R ²	0.837	0.622	0.624	0.813
K'	1.723	1.231	1.652	0.967

表6 既往研究による各較正粒子の感度とK'値

	SA0.3	SA1.0	AD	KL
Gradient.	0.518	0.335	1.566	1.068
R ²	0.823	0.890	0.467	0.840
K'	1.931	2.985	0.639	0.936